BLOGGER TEMPLATES AND TWITTER BACKGROUNDS

miércoles, 26 de enero de 2011

propiedades fisicas y quimicas de los elementos

Densidad

La densidad de un elemento indica el número de unidades de masa del alemento que están presentes en cierto volumen de un medio. Tradicionalmente la densidad se expresa a través de la letra griega “ro” (escrita r). Dentro del sistema internacional de unidades (SI) la densidad se expresa en kilogramos por metro cúbico (kg/m3). La densidad de un elemento se expresa normalmente de forma gráfica con temperaturas y presiones del aire, porque ambas propiedades influyen en la densidad.
El punto de fusión de un elemento o compuesto es la temperatura a la cual la forma sólida del elemento o compuesto se encuentra en equilibrio con la forma líquida. Normalmente se asume que la presión del aire es de 1 atmósfera.
Por ejemplo: el punto de fusión del agua es de 0oC, o 273 K.
Punto de ebullición

El punto de ebullición de un elemento o compuesto significa la temperatura a la cualla forma líquida de un elemento o compuesto se encuentra en equilibrio con la forma gaseosa. Normalmente se asume que la presión del aire es de 1 atmósfera.
Por ejemplo: el punto de ebullición del agua es de 100oC, o 373 K.
En el punto de ebullición la presión de un elemento o compuesto es de 1 atmósfera.
Radio de Vanderwaals

Incluso si dos átomos cercanos no se unen, se atraerán entre sí. Este fenómeno es conocido como fuerza de Vanderwaals.
Las fuerzas de Vanderwaals provocan una fuerza entre los dos átomos. Esta fuerza es más grande cuanto más cerca estén los átomos el uno del otro. Sin embargo, cuando los dos átomos se acercan demasiado actuará una fuerza de repulsión, como consecuencia de la repulsión entre las cargas negativas de los electrones de ambos átomos. Como resultado, se mantendrá una cierta distancia entre los dos átomos, que se conoce normalmente como el radio de Vanderwaals.
A través de la comparación de los radios de Vanderwaals de diferentes pares de átomos, se ha desarrollado un sistema de radios de Vanderwaals, a través del cual podemos predecir el radio de Vanderwaals entre dos átomos, mediante una simple suma.
Radio iónico

Es el radio que tiene un ión en un cristal iónico, donde los iones están empaquetados juntos hasta el punto que sus orbitales atómicos más externos están en contacto unos con otros. Un orbital es el área alrededor de un átomo donde, de acuerdo con la probabilidad de encontrar un electrón es máxima.
Isótopos

El número atómico no determina el número de neutrones en una corteza atómica. Como resultado, el número de neutrones en un átomo puede variar. Como resultado, los átomos que tienen el mismo número atómico pueden diferir en su masa atómica. Átomos del mismo elemento que difieren en su masa atómica se llaman isótopos (isotopos). Principalmente con los átomos más pesados que tienen un mayor número, el número de neutrones en la corteza puede sobrepasar al número de protones.
Isótopos del mismo elemento se encuentran a menudo en la naturaleza alternativamente o mezclados.

Un ejemplo: el cloro tiene un número atómico de 17, lo que básicamente significa que todos los átomos de cloro contienen 17 protones en su corteza. Existen dos isótopos. Tres cuartas partes de los átomos de cloro que se encuentran en la naturaleza contienen 18 neutrones y un cuarto contienen 20 neutrones. Los números atómicos de estos isótopos son: 17 + 18 = 35 y 17 + 20 = 37. Los isótopos se escriben como sigue: 35Cl y 37Cl.
Cuando los isótopos se denotan de esta manera el número de protones y neutrones no tienen que ser mencionado por separado, porque el símbolo del cloro en la tabla periódica (Cl) está colocado en la posición número 17. Esto ya indica el número de protones, de forma que siempre se puede calcular el número de electrones fácilmente por medio del número másico.
Existe un gran número de isótopos que no son estables. Se desintegrarán por procesos de decaimiento radiactivo. Los isótopos que son radiactivos se llaman radioisótopos.
Corteza electrónica

La configuración electrónica de un átomo es una descripción de la distribución de los electrones en círculos alrededor de la corteza. Estos círculos no son exactamente esféricos; tienen una forma sinuosa. Para cada círculo la probabilidad de que un electrón se encuentre en un determinado lugar se describe por una fórmula matemática. Cada uno de los círculos tiene un cierto nivel de energía, comparado con la corteza. Comúnmente los niveles de energía de los electrones son mayores cuando están más alejados de la corteza, pero debido a sus cargas, los electrones también pueden influir en los niveles de energía de los otros electrones. Normalmente los círculos del medio se llenan primero, pero puede haber excepciones debido a las repulsiones.
Los círculos se dividen en capas y subcapas, que se pueden numerar por cantidades.
Energía de la primera ionización

La energía de ionización es la energía que se requiere para hacer que un átomo libre o una molécula pierdan un electrón en el vacío. En otras palabras; la energía de ionización es una medida de la fuerza con la que un electrón se enlaza con otras moléculas. Esto involucra solamente a los electrones del círculo externo.
Energía de la segunda ionización

Aparte de la energía de la primera ionización, que indica la dificultad de arrancar el primer electrón de un átomo, también existe la medida de energía par ala segunda ionización. Esta energía de la segunda ionización indica el grado de dificultad para arrancar el segundo átomo.

También existe la energía de la tercera ionización, y a veces incluso la de la cuarta y quinta ionizaciones.

No hay comentarios:

Publicar un comentario